

COMPUTING GOOD NASH EQUILIBRIA IN COMBINATORIAL CONGESTION GAMES Pieter Kleer and Guido Schäfer

Congestion games

A congestion game Γ is given by the tuple $(N, E, (\mathcal{S}_i)_{i \in N}, (c_e)_{e \in E})$ with

- set of players N with n = |N|,
- set of resources E with m = |E|,
- strategy set $\mathcal{S}_i \subseteq 2^E$ for every $i \in N$,

Computing Rosenthal minimizer

- Use two-step approach [Del Pia et al. (2017)]:
- i) Aggregation: Compute a feasible load profile f^* minimizing Rosenthal's potential. • CONTRIBUTION: Can do this if P_N has IDP + box-TDI.
- Gives rise to (strongly) polynomial time algorithms for this phase (relying on ellipsoid method).

• cost function c_e for every $e \in E$.

Player objective: minimize total cost over all resources used, i.e., minimize

$$C_i(s) = \sum_{e \in s_i} c_e(x_e)$$

where $s = (s_1, \ldots, s_n) \in S_1 \times \cdots \times S_n$ is a *strategy profile* with x_e the number of players using resource e in strategy profile s.

Pure Nash equilibrium: strategy profile s such that

 $C_i(s) \leq C_i(s_{-i}, s'_i)$ for all $i \in N$ and $s'_i \in S_i$. These are the local minima of Rosenthal's potential:

 $\Phi(s) = \sum_{e \in E} \sum_{k=1}^{x_e} c_e(k).$ That is, for all $i \in N$ and $s'_i \in \mathcal{S}_i$: $\Phi(s) - \Phi(s_{-i}, s'_i) = C_i(s) - C_i(s_{-i}, s'_i).$

Polytopal strategy sets [Del Pia et al. (2017)]

Strategy set $\mathcal{S}_i \subseteq 2^E$ given by *extreme points of polytope* P_i for $i \in N$.

- ii) **Decomposition:** Decompose f^* into a feasible strategy profile.
 - \bullet (OPEN) Can we always decompose in polynomial time?
 - Known for individual applications and in case P_N satisfies (stronger) middle integral decomposition property.

Price of Stability

Quality of strategy profile s is measured by social cost

 $C(s) = \sum_{i \in N} C_i(s) = \sum_{e \in E} x_e c_e(x_e).$

Price of Stability (PoS): compare best Nash equilibrium against social optimum.

$$\operatorname{PoS}(\Gamma) = \frac{\min_{s \in \operatorname{NE}} C(s)}{\min_{s^* \in \times_i \mathcal{S}_i} C(s^*)}$$

CONTRIBUTION:

Let P_N have **IDP** + **box-TDI**, then for cost functions in class \mathcal{D} we have $PoS(\Gamma) \leq \rho(\mathcal{D})$.

• $\rho(\mathcal{D})$ is *price of anarchy* for non-atomic routing games [Correa et al., 2004].

-For \mathcal{D} the class of polynomials of degrees at most d:

The points $\{0,1\}^m \cap P_i$ represent the **incidence vectors of strategies** in S_i . The **aggregation polytope** P_N is defined by

 $P_N = \sum_{i \in N} P_i.$

MAIN RESULT (informal):

Identify sufficient polytopal properties of P_N that allow for polynomial time computation of good Nash equilibria (unifying and extending existing work).
Integer Decomposition Property (IDP):

 $\forall y \in P_N \cap \{0, n\}^m \; \exists y_i \in P_i \cap \{0, 1\}^n \text{ such that } y = \sum y_i$

Relevance for congestion games emerges in [Del Pia, Ferris and Michini (2017)]. **box-Total Dual Integrality (box-TDI)**:

-Technical condition sufficient to guarantee, among other things, box-integrality (intersection of integral polytope with integral box being integral).

 $\rho(\mathcal{D}) = \left(1 - \frac{d}{(d+1)^{(d+1)/d}}\right)^{-1} = \Theta\left(\frac{d}{\ln d}\right).$

Generalization of [Fotakis, 2010] for symmetric network case.
Improves asymptotic bound of d + 1 for price of stability in general congestion games [Christodoulou and Gairing (2016)].

Bottleneck congestion games

A bottleneck congestion game is also given by tuple $(N, E, (\mathcal{S}_i)_{i \in N}, (c_e)_{e \in E})$ as before.

Player objective: minimize maximum cost over all resources used, i.e., minimize

 $C_i(s) = \max_{e \in s_i} c_e(x_e).$ Strong equilibrium: for all $K \subseteq N$ $C_i(s) \le C_i(s_{-K}, s'_K)$

for at least one $i \in K$, and all $s'_K \in \times_{i \in K} S_i$.

In [Harks, Hoefer, Klimm and Skopalik (2013)] an algorithm for computing a strong equilibrium based on a **strategy packing oracle** is given, and existence of an efficient oracle for various combinatorial problems is shown.

CONTRIBUTION: IDP + box-TDI (to some extent) sufficient for having efficient oracle.

Applications

Congestion games with strategy sets of the following forms.
Symmetric totally unimodular (e.g., symmetric network).
Base matroid (e.g., spanning trees in undirected graph).
Symmetric *r*-arborescence (directed spanning tree rooted in *r*).
Common source network.

References

[1] A. Del Pia, M. Ferris and C. Michini (SODA 2017). Totally unimodular congestion games

[2] D. Fotakis (TOCS 2010). Congestion Games with Linearly Independent Paths: Convergence Time and Price of Anarchy.

[3] T. Harks, M. Hoefer, M. Klimm and A. Skopalik (MP 2013). Computing pure Nash and strong equilibria in bottleneck congestion games

[*] P. Kleer and G. Schäfer (EC 2017). Potential function minimizers in combinatorial congestion games: efficiency and computation

