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Computing good Nash equilibria in combinatorial congestion games

Pieter Kleer and Guido Schäfer

Congestion games

A congestion game Γ is given by the tuple (N,E, (Si)i∈N , (ce)e∈E) with

• set of players N with n = |N |,
• set of resources E with m = |E|,
• strategy set Si ⊆ 2E for every i ∈ N ,

• cost function ce for every e ∈ E.

Player objective: minimize total cost over all resources used, i.e., minimize

Ci(s) =
∑
e∈si

ce(xe)

where s = (s1, . . . , sn) ∈ S1 × · · · × Sn is a strategy profile with xe the number of
players using resource e in strategy profile s.

Pure Nash equilibrium: strategy profile s such that

Ci(s) ≤ Ci(s−i, s
′
i)

for all i ∈ N and s′i ∈ Si. These are the local minima of Rosenthal’s potential :

Φ(s) =
∑
e∈E

xe∑
k=1

ce(k).

That is, for all i ∈ N and s′i ∈ Si: Φ(s)− Φ(s−i, s′i) = Ci(s)− Ci(s−i, s′i).

Polytopal strategy sets [Del Pia et al. (2017)]

Strategy set Si ⊆ 2E given by extreme points of polytope Pi for i ∈ N .
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Pi = {x : Ax ≤ bi} ⊆ [0, 1]m

The points {0, 1}m ∩ Pi represent the incidence vectors of strategies in Si. The
aggregation polytope PN is defined by

PN =
∑
i∈N

Pi.

MAIN RESULT (informal):

Identify sufficient polytopal properties of PN that allow for polynomial time
computation of good Nash equilibria (unifying and extending existing work).

• Integer Decomposition Property (IDP):

∀y ∈ PN ∩ {0, n}m ∃yi ∈ Pi ∩ {0, 1}n such that y =
∑
i

yi

–Relevance for congestion games emerges in [Del Pia, Ferris and Michini (2017)].

•box-Total Dual Integrality (box-TDI):

–Technical condition sufficient to guarantee, among other things, box-integrality
(intersection of integral polytope with integral box being integral).

Applications

Congestion games with strategy sets of the following forms.

• Symmetric totally unimodular (e.g., symmetric network).

•Base matroid (e.g., spanning trees in undirected graph).

• Symmetric r-arborescence (directed spanning tree rooted in r).

•Common source network.

s t

Computing Rosenthal minimizer

Use two-step approach [Del Pia et al. (2017)]:

i)Aggregation: Compute a feasible load profile f ∗ minimizing Rosenthal’s potential.

•CONTRIBUTION: Can do this if PN has IDP + box-TDI.

•Gives rise to (strongly) polynomial time algorithms for this phase (relying on ellipsoid
method).

ii)Decomposition: Decompose f ∗ into a feasible strategy profile.

• (OPEN) Can we always decompose in polynomial time?

•Known for individual applications and in case PN satisfies (stronger) middle integral
decomposition property.

Price of Stability

Quality of strategy profile s is measured by social cost

C(s) =
∑
i∈N

Ci(s) =
∑
e∈E

xece(xe).

Price of Stability (PoS): compare best Nash equilibrium against social optimum.

PoS(Γ) =
mins∈NEC(s)

mins∗∈×iSiC(s∗)

CONTRIBUTION:

Let PN have IDP + box-TDI, then for cost functions in class D we have PoS(Γ) ≤ ρ(D).

• ρ(D) is price of anarchy for non-atomic routing games [Correa et al., 2004].

–For D the class of polynomials of degrees at most d:

ρ(D) =

(
1− d

(d + 1)(d+1)/d

)−1

= Θ

(
d

ln d

)
.

•Generalization of [Fotakis, 2010] for symmetric network case.

• Improves asymptotic bound of d + 1 for price of stability in general congestion games
[Christodoulou and Gairing (2016)].

Bottleneck congestion games

A bottleneck congestion game is also given by tuple (N,E, (Si)i∈N , (ce)e∈E) as before.

Player objective: minimize maximum cost over all resources used, i.e., minimize

Ci(s) = max
e∈si

ce(xe).

Strong equilibrium: for all K ⊆ N

Ci(s) ≤ Ci(s−K, s
′
K)

for at least one i ∈ K, and all s′K ∈ ×i∈KSi.

In [Harks, Hoefer, Klimm and Skopalik (2013)] an algorithm for computing a strong equilib-
rium based on a strategy packing oracle is given, and existence of an efficient oracle for
various combinatorial problems is shown.

CONTRIBUTION: IDP + box-TDI (to some extent) sufficient for having efficient oracle.
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