### Survivable Network Design for Group Connectivity in Bounded-Treewidth Graphs

#### **Daniel Vaz**

Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, MPI Informatics, Germany Aalto Univ., Finland IIIT Delhi, India Tel-Aviv Univ., Israel MPI Informatics, Germany

### **Group SNDP**



# **Group SNDP**

- Input:
  - Graph G, edge/vertex costs
  - Groups  $S_i$  with connectivity demands  $k_i$
  - Root r
- Goal: Find a min-cost graph that
  - Contains  $k_i$  disjoint paths from r to  $v_i \in S_i$

## **Known Results**

- $k_i = 1$ : Group Steiner Tree
  - $O(\log^3 n)$ -approx\*,  $O(\log^2 n)$ -hardness [GKR'98], [HK'03]
  - Bounded Treewidth:  $O(\log^2 n)$ -approx [CDLV17]
- $k_i \leq 2$ •  $ilde{O}(\log^4 n)$ -approx\*

[GKR'10]

- \* Cannot be improved beyond  $O(\log n)$ 
  - Both use tree embedding, which has distortion  $\Omega{\log n}$

## **Known Results**

[KKN'12]

- Groups of size 1: SNDP
  - 2-approx [Jain'00]
- In general: Label-Cover hard
  - $2^{\log^{1-\epsilon} n}$  hardness
  - $\Omega(n^{\delta})$  hardness under Sliding Scale Conjecture

# **Our Results**

- Group SNDP:
  - $O(\log^2 n)$ -approx in  $n^{f(k,tw(G))}$
- SNDP:
  - Exact algorithm in time  $n2^{f(k,tw(G))}$
- Both results for vertex weights / connectivity

# Main Idea

- Develop a DP without group constraints
- Turn the DP into an LP and add the group constraints
- New LP represents a variant of Group Steiner Tree

### Survivable Network Design for Group Connectivity in Bounded-Treewidth Graphs

#### **Daniel Vaz**

Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, MPI Informatics, Germany Aalto Univ., Finland IIIT Delhi, India Tel-Aviv Univ., Israel MPI Informatics, Germany

#### **19th Max Planck Advanced Course on the Foundations of Computer Science**



13 - 17 August 2018, Saarbrücken, Germany

#### **Fine-Grained Complexity and Algorithms**



Ramamohan Paturi

UC San Diego Foundations of Finegrained Complexity





Amir Abboud

**IBM Almaden** 

Hardness in P





Danupon Nanongkai

KTH

Dynamic graphs: algorithms, conditional lower bounds, and complexity classes